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ABSTRACT: As in part I of this study, in the same manner
in the present part II as well, by the same modus operandi
way, an attempt was made to introduce, by means of a given
operational mode, some further practical parameters for a
“by-eye” but well-proven experimental viscoelastic charac-
terization of a polymeric solid. Thus, through consideration
of the peculiar vertical shift behavior of the apparent
modulus (Ẽ) of isotactic polypropylene (iPP) and based on
the KWW model, it is shown that, in an empirical and a
formalistic sense, a relevant effective or equivalent (single)
characteristic relaxation time can be introduced which can
give some new interpretations for the linear and nonlinear
viscoelastic behavior of a polymeric material, as that of a
“time–strain clock,” which, as an intrinsic function, is re-
sponsable for a functional time–strain shift of the relaxation

time and, at the same time, for a shift toward to a more linear
or to a more nonlinear behavior. In the above context of
attempts, another functional relationship was shown, the
so-called spectral shift function and its corresponding pa-
rameter of nonlinearity strength, through which some fur-
ther interpretations and characterizations connected with
the existence of the permanent internal stress could be made.
Finally, the introduction of the so-called spectral isostrains
and their corresponding “spectral inversion point” complete
the “set” of the operative parameters proposed for the
above-mentioned purpose. © 2002 Wiley Periodicals, Inc. J Appl
Polym Sci 87: 138–148, 2003
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INTRODUCTION

Just as spectral analysis of thermal radiation, and, after
that, spectroscopy, in general, contributed to the most
detailed characterization and in-depth study of a ma-
terial in physics, in the same way, the “spectral” dis-
tribution of the relaxation modulus, that is, the so-
called mechanical spectroscopy, contributed to the
study of the polymers’ mechanics. Thereby, there have
been, and are still, huge research efforts to find the
relaxation “spectrum” through experimental and the-
oretical facts. The most popular experimental methods
were, and still are, the ones of Alfrey and Ferry–
Williams,1,2 which describe the zeroth (Alfrey) and
first and second degrees (Ferry–Williams) of approxi-
mations. The Tobolsky3 method has a quite limited
application, as it a priori accepts a general, very simple
distribution (box distribution) which mainly describes
only the high spectrum times. Here, we should refer to
the recent experimental study4 where the relaxation
time spectrum is approached by a Gaussian spectral

distribution in order to describe the stress-relaxation
behavior of isotactic polypropylene (iPP) over a wide
range of strain, time, and temperature by means of
extended numerical computational steps. On the other
hand, it is generally accepted, by almost all experts,
that Alfrey’s method is the most practical one and,
therefore, we intend to apply it to some following
calculations for the evaluation of the corresponding
parameters.

Apart from the spectrum itself, the meaning of the
relaxation time has great importance. The determina-
tion of a “characteristic” relaxation time, which will
describe the viscoelastic behavior of a material, is,
today, a subject for the study of polymers. For this
purpose, so far, we distinguish two basic ways: the
theoretical and the experimental. In the first way, it is
introduced indirectly by means of several notions,
such as the so-called stress–clock function,5 volume
clock,6 and total strain7—a new interpretation of the
relaxation time. Here, we have to remind one of the
older notion of the temperature-dependent intrinsic
time, which was already introduced by Leaderman in
1943.8

In the second more empirical and more direct way,
we distinguish mainly the experimental studies,
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where, by means of some general models such as the
KWW,9 the power Law,9 and the logarithmic-law of
Matsuoka,9 an attempt is made to find out a single
characteristic time.

In part II of this investigation, we introduce and try
to prove using the so-called modus operandi way new
notions of some operative parameters such as of the
single effective characteristic relaxation time, spectral
shift function, and spectral inversion point which can
describe in a relatively more practical supplementary
and/or complementary manner the viscoelastic be-
havior of solid polymers.

GENERAL THEORETICAL CONSIDERATIONS

A basic and practical method for the determination of
a characteristic relaxation time is the adjustment of the
experimental relaxation data on several semiempirical
functions, which, used as models, will eventually be
able to describe the molecular mobility of a material.
Also, from the correlation coefficient r2 of the best fit,
it will be possible to extract some essential conclusions
for each model. One of the most “flexible” and versa-
tile models is the Kohlrausch one (or KWW), which is
amply used for describing the polymers’ mechanics on
a macrostructural and microstructural basis.9,10 This
model is expressed by a function of the relaxation
modulus as follows:

E�t� � E0exp���t/�c�
n� (1)

Kohlrausch had already discovered, in 1847, that the
above equation could well approach the following
one:

E�t� � �
0

�

g���exp��t/��d� (2)

which, in turn, can mathematically be expressed as

lim
N3�

�
i�1

N

E0iexp��t/�i� � �
0

�

g���exp��t/��d� (3)

This last relation describes, in other words, a vis-
coelastic body with an infinite number N of Maxwell
elements, in a parallel connection, and is also known
as the Maxwell–Wiechert body. In the Kohlrausch
equation, the parameter n characterizes the line width
of the spectral distribution of the relaxation time itself.
Therefore, if n � 1, the spectrum consists of one line,
which means that there is only one active mode of
relaxation time for the whole body. As n is reduced,
the distribution becomes wider and this means that
there are more active modes of relaxation times.

In the same equation, �c is a characteristic relaxation
time which is required for the reduction of the initial
modulus E0 to 1/e of the initial value. Consequently,
this model is very simple and practical as it describes
the viscoelastic behavior through only three parame-
ters: n, �c, and E0. Therefore, apart from the fact that, in
most cases and with the help of best fit, this model
approaches well and satisfactorily the experimental
facts, it has also a basic natural notion in connection to
the kinetic mechanisms of the molecular mobility.9 Of
course, it is necessary to point out that these three
parameters are consecutively changing under defor-
mation (stress) and temperature.

Another empirical model which often correctly de-
scribes the relaxation phenomena is the one shown
below with the following simple equation (power
law):

E�t� � E0�t/�c�
�� (4)

It is well known that, in general, the KWW model
should describe very well the viscoelastic behavior of
a solid polymer in the first stage of the relaxation
spectrum (solidlike state) while the power law should
respond in the second stage (transition) of the spec-
trum. In this sense, estimations give n � 0.5 and �
� 0.6 for polymers in a thermodynamically equilib-
rium state.9

EXPERIMENTAL

Particular knowledge of certain constructive parame-
ters on every polymer material, other than general
properties and definitions, is required before the ma-
terial enters the experimental stages. Some of these
parameters, like the melt-flow index, (MFI), the mo-
lecular mass and weight distribution, and the hetero-
geneity index (Mn, Mw, D), are given in Table I. Fur-
ther characteristics of the PP used can be found in the
references given in part I of this study. Isotropic ma-
terials were obtained at 150°C from compression-
molded sheets with a thickness of 0.30 cm. The sheets
were afterward cooled at room temperature. From
these sheets, dog-bone specimens were cut which
were tested in stress relaxation. All tests were carried
out at room temperature (�24°C) and using an In-
stron-type tensile machine.

TABLE I
Parameters of Polymer Material

Property
MFI (230°C/2,16 kg) 15.4
MFI (190°C/2,16 kg) 6.1
Mw 257,500
Mn 59,000
D 4.3
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RESULTS AND DISCUSSION

Formalistic estimations of an effective
characteristic relaxation time

Already in part I of this investigation from the first
experiments, it appeared that, for the apparent mod-
ulus Ẽ, there is a general trend for a better response of
the KWW model than the power law model. The

above-mentioned apparent modulus is defined as that
modulus which derives from experimentation with a
finite loading time. The supplementary measurements
carried out in this article better confirmed and proved
this trend. Thus, for example, in the plots of Figures (1)
and (2), the curves for the response of the apparent
stresses, �̃, to the KWW model using linear regression
in the form ln �̃ � t1/2 are given for different initial

Figure 1 Linear regression best-fit plot of apparent stress the evidence of response to the KWW model, �0 � 1%. Linear
regression: y � � 	 �x, with y � ln �̃ and x � t1/2, r2 � 0.98, n � 0.5.

Figure 2 Linear regression best-fit plot of the apparent stress relaxation for evidence of response to the KWW model, �0
� 2%. Linear regression procession as in Figure 1, r2 � 0.97 and n � 0.5.
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strains. In this way, in each curve of these figures, the
parameters of the respective best-fitted function was
found by the aid of Table Curve-2D fitting software of
Jandel Scientific. Herefrom appears the relatively
good stability of the model from the relatively small
variation of the correlation coefficient r2. The stability
of the model becomes more evident even from the little
influence of the strain rate appearing in Figures (3)–(5).

The power-law model is shown in the linear ln � ln
plot of Figure 6, from where we assess a constant

power index � � �0.3 for various strains. This value is
in contradiction with that given by Matsuoka,9 where
� � �0.6. Therefore, by taking as the “correct” model
the KWW one, because it fits very well the experi-
ments for n � 0.5, the value given by Matsuoka,9 we
shall use it as a reference model in this work.

Now, taking into consideration the aforementioned
remarks and based on the KWW model, we can go
through a formal “transformation” to an equivalent
nonlinear modulus:

Figure 3 Linear regression best-fit plot for KWW response at �̇0 � 10�3 (n � 0.5, r2 � 0.98).

Figure 4 Linear regression best-fit plot for KWW response at �̇0 � 10�2 (n � 0.5, r2 � 0.97).
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Ẽ��t� � Ẽ0e��t/�̃c�n
� Ẽ0e�tn�1/�c

n	B/tn� � Ẽ0e��t/�c�n�B

� Ẽ�t�g���, with g��� � e�B (5)

from where it is deduced that

�̃c
n��, t� �

1
1/�c

n � B/tn �
��c � t�n

tn � �c
n � B

or

Figure 5 Linear regression best-fit plot for KWW response at �̇0 � 3 
 10�2 (n � 0.5, r2 � 0.96).

Figure 6 Plot for power-law response for different initial loading strains, �0 (for strain rate � 10�3/s).
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�̃c��, t� �
�c � t

t�1 � ��c

t �
n

B� 1/n �
�c

�1 � ��c

t �
n

B� 1/n (6)

[As will be shown later, B is a function of the strain
(deformation)]. Based on this context, we can formally
introduce a new effective or “equivalent” characteris-
tic relaxation time �̃c, which must be a function of both
strain (�) and observation time (t). Of course, this
occurs for a specific condition, that is, Ẽ�(t) � Ẽ(t)g(�),
where the nonlinear modulus can be expressed as a
product of two functions with different variables, that
is, of the linear modulus and of a strain function.

At this place, it seems quite “attractive” to devise
the notion of this equivalent characteristic relaxation
time (�̃c) which could describe, in a different way,
some physical aspects of the viscoelastic behavior. In
this sense, eq. (6) could represent a evolution function
with time for an increase of the internal viscosity,
which leads to a “time-hardening” behavior as it oc-
curs, for example, in a creeping material.

Now, from Figure 7, we can deduce a strong vertical
shift of the modulus curves with the deformational
variation. A similar shift was found also in ref. 4.
Based on the curves of Figure 7, we calculated the
vertical shift factor as follows: We considered as a
reference the modulus Ẽ, which corresponds to strain
�1%, where Ẽ� � Ẽ1 � Ẽ (linear). So, for a given time

t � const, we measured the vertical distance of each
curve from the time axis and we calculated the ratios:

Ẽ1

Ẽe

� g��� (7)

The curve calculated in this way is shown in Figure 8,
while the following linear relation can be obtained:

ln g��� � A�0 	 cf g��� � eA��c � e�B �A 
 0, c 
 0�

(8)

and

B � �A�0 � c � �1/3�0 � 1.1 (9)

After simple algebra, it can be shown that eq. (6) has
sense only when t � (�B)1/n�c and for �B � 0 or when
�0 � 3%. These findings may be interpreted by the fact
that, in the “early” steps of observation times, t � �c,
the “time–strain clock” of the viscoelastic nonlinearity
is working well, and as time goes on, for t � �c, this
“clock” tends to remain in rest, which means that �̃c(�,
t) 3 �c � const.

Now, we can make, be it so, a formalistic correlation
of eq. (6) with the notion of the stress–clock function.5

Figure 7 Vertical-shift evidence of the apparent moduli with deformational variation (for strain rate � 10�3/s).
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Thus, in that study for a simplified example of a
Maxwell model, the relationship

E�t� �
3kE�0�

�0
�̃c

1
1 	 K�̃c

with �̃c � �c/[b(�)], where b(�) is the so-called stress–
clock function, is given. Now, by comparing with eq.
(6), we see that

b��� � �1 �
�c

t B� 1/n

� f�t, ��

thus having a “formal mapping” from the “stress
space” to the “time–strain space,” which is expressed
by a time–strain clock function.

Consequently, because iPP presents a so-called gen-
eral peculiar viscoelastic behavior, through the rela-
tion Ẽ�(t) � Ẽ(t)g(�), the nonlinear behavior can be
expressed by the linear one, provided that g(�) is
known. Furthermore, if the Ẽ�(t) behavior of a poly-
mer, for a given deformation �, is known, it is possible
to apply it on any other deformation. In this way, it is
possible, when necessary, to apply many of the theo-
retical explanations stated in Appendices A/B and in
part I of this investigation, related to the virtual mod-
ulus.

In this sense, eventually, for all polymers having the
aforementioned general viscoelastic behavior, we can
define an “intrinsic,” characteristic relaxation time
�̃c(�, t), which could modify the well-known notion of
the “internal stress–clock function,” connected to the
nonlinear viscoelastic behavior and “rename” it, for
example, an “internal time–strain clock function.”
From all the aforementioned, it can be argued that the
nonlinear behavior of iPP, expressed by its general
viscoelastic peculiarity [eqs. (5) and (7)] in conjunction
with some other relatively more complicated methods
and techniques of analyzing the nonlinearity, as, for
example, in refs. 11 and 12, can be now studied more
effectively.

Formalistic approach of a more general
characteristic relaxation time

Now, if we want to have a body model with a dashpot
of an Eyring type (process activated–stress-biased
dashpot), then this model is primarily turned into a
nonlinear one. The Eyring’s dashpot behavior can be
expressed by the known relation

d�

dt � �̇ � �̇0exp��
H
RT�sinh���

RT� (10)

This relation is more accurate in expressing the mate-
rial’s behavior as it takes into consideration certain
parameters, such as the temperature and the molecu-
lar mobility by the activation volume. Furthermore,
we will try to better understand this problem.

If in the basic Maxwell–Wiechert model the “New-
tonian dashpot” is substituted with an Eyring one,
then for a stress relaxation with a given �0 � const, the
following known differential equation is provided:

�̇/Ei � ���̇�0i�sinh���i/kT� (11)

which we can integrate as

�
�0

�1 d�

sinh���i/kT�
� ��

0

t

�̇0iEidt (12)

Using the transformations z � � and a � �i/T, we
have

�
z0

z1 dz
sinh az �

1
a lnth

az
2 �

KT
�i

lnth��i�i/KT2�]��0�
�1�t� (13)

Thus, the solution of eq. (11) is

kT
�i

�lnth��i�1/KT2 	 lnth��i�0/2KT��� � �At (14)

Figure 8 Logarithmic plot of vertical shift versus strains.
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where A � �̇�0iEi (�̇�0i is a preexponential factor of the
initial deformation rate).

If it is considered that, in general, the following
relation is valid:

��

2KT � 1 (15)

and also using the Taylor expansion, we have the
approximation

ln�th� �i�

2KT�� � ln� �i�

2KT� (16)

Then, eq. (14) is modified as

ln��1/�0� � �At�i/KT (17)

�1/�0 � exp��At�i/KT�

and taking �0 � �(t � 0), we have

�1�t� � ��0�e�t/�̃i and Ei�t� � Ei�0�e�t/�̃i (18)

where

�̃i �
kT
Ei�i

1
�̇�0i

� const �s�

and which is an equivalent or an effective elementary
relaxation time. In other words, eq. (18) represents the
general form of an “effective nonlinear Maxwell ele-
ment” with its corresponding “effective” relaxation
time �̃i.

Now going from a discrete distribution to a contin-
uous one, we have

lim
N3�

�
i�1

N

Ei�t� � �
0

�

g��̃�e�t/�̃d� � E�t� (19)

with �̃i 3 �̃. Using the Kohlrausch principle, we have

E�t� � E�0�e��t/�̃c�n, (20)

with �̃c � f(�0, T, ��), where �� is an equivalent activation
volume, which represents the molecular and the mor-
phological states of the polymeric solid.

Of course, all the above-mentioned are based on the
assumption given by relation (15), which is valid if we
take some experimental data known for PP, such as
“activation volume” � � � ln m3 � 10�27 m3, �max � 1
kp/mm2 � 0.1 MPa, T � 300 K, from which we can
estimate

�max�

2KT � 10�2 � 1

that is, condition (15). From the above-mentioned, it
can be argued that the effective characteristic relax-
ation time �̃c, which we have introduced, may be of a
more general form than those given in eq. (6). In this
sense, we would be able to express it as �̃c � f(�, �� , T,
�, t). For this function, we can give the following
simple formalistic interpretation and/or correlations:
The strain dependence can be related to the “total
strain” model of Valanis7 and/or to eq. (6); the volu-
metric dependence, to the “volume–clock” model of
Shay and Caruthers6; the stress dependence, to the
“stress–clock” model of Bernstein and Shokooh5; the
temperature dependence, to the temperature-depen-
dent intrinsic time model of Leaderman8; and, finally,
the time dependence, to eq. (6).

Spectral shift function

The apparent relaxation spectrum H̃(�) of iPP was
estimated through Altrey’s approach as follows:

H̃��� � �
dẼ�t�
d ln t

�
t��

(21)

Consequently, for a precise calculation of the “Alfrey’s
slopes,” it is necessary to use an apparent modulus
curve with a logarithmic time scale. Such curves are
shown in Figure 9, where H̃(�) is given by the slope of
each curve which changes with strain �0. Figure 10
was constructed in a similar way, taking for the ordi-
nate the slope values from the �(t) � ln t plots. The
plot in Figure 10 is the so-called Lee’s technique for
the evidence of the permanent internal (strain-in-
duced) stresses. Now, we can see that, by extrapolat-
ing to a “zero slope” (spectrum), it still remains a
negative stress (strain), that is, we should have, after
unloading, permanent (residual) internal stresses in
the material.

The final plot of the spectral curve H̃(�) is given in
Figure 11, from which the following linear equation
arises:

H̃��� � �a� � � (22)

with a � 1 and � � 1.1 MPa, meaning that we have the
behavior of a linear spectral shift with the deforma-
tional change.

From the above equation, we can deduce three char-
acteristic parameters which can, in more detail, char-
acterize a material. These are a, the viscoelastic non-
linearity strength, �, the “zero” strain spectrum which
approaches the one of linear behavior (for very small
deformation), while �c � �/a is a fictive-critical strain
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point at which the spectrum “vanishes,” in the sense
of passing into the viscoplastic state. Here, the flow of
the material accelerates the slippage phenomena be-
tween the macromolecules and the “physical mean-
ing” of the elastic modulus disappears.

From the above, it is deduced that the Alfrey’s
approach given by eq. (21) was applied on a nonlinear
material, and, therefore, in conjunction with the pecu-
liar eq. (5), we can similarly assume that H̃�(�)
� H̃(�)g(�), from where it is concluded that

H̃���� � � �dẼ�t�
d ln t��g���� � �a� � � � �� � 1.1 (23)

In the first parentheses, we have the (Alfrey’s) linear
spectrum, which, as shown before, can be well ap-
proached for � 3 0 (or for a very small deformation)
by giving a value of about 1. Now, from the above, we
can extract the following relation:

g��� � � 	 1 (24)

Figure 9 Logarithmic time plot of relaxation moduli (Alfrey’s slopes) for different loading strains.

Figure 10 Changes of Alfrey’s slopes with stress (strain) (for strain rate � 10�3/s).
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This function is similar to Figure 10, which, as men-
tioned, gives us the slope changes, as shown in Figure
9, for different loading strains. By taking � � 0 from
eq. (24), we have g(�) � �1, that is, it is a “negative”
or fictive spectral distribution, which must lead to the
existence of “negative” or remanent internal stresses.
From all the above, we can corroborate the existence of
the peculiar, nonlinear, viscoelastic behavior of iPP,
given by eqs. (5) and (6), and, at the same time, the
existence of the internal residual stresses.

Spectral inversion point and “isostrains”

From the relationship H̃(�) � �g(�), we arrive at the
relation

g��� �
H̃���

�
�

h
�

, where h � const (25)

This constant is derived from Figure 9, where, for a
given deformation (strain) and according to Alfrey’s
approach, we obtain a constant spectrum (boxlike dis-
tribution) during the experimental observation time.
The aforementioned equation is a hyperbola, with
some characteristic points such as �s � �h and as

� �2h, as shown in the sketch of Figure 12.
For a given known h � H̃(�) taken from Figure 11,

we can now construct the curves of Figure 13, which

are the hyperbolas for constant deformations, and call
them spectral “isostrains.” Therefore, as may represent
a kind of shift factor and, at the same time, �s � as/�2,
an “inversion point” of the spectral density g(�). In
other words, this point can exist in the sense that the
maximal change in the rate of the spectral density
coincides with the point of maximum curvature.
Therefore, for � � �s, the density g(�) changes very
slowly, while for � � �s, it changes very fast. In this
context, this point can be further regarded as a critical
“metastable” point of the spectral density. Thus, the
greater is �s, the slower is the transition from linear to
nonlinear behavior. This means, in conclusion, that,
with an increasing strain, the material’s “instability”
of the linear viscoelastic state increases and that, at the
same time, the material behaves as a more nonlineary
viscoelastic.

CONCLUSIONS

In this article, there has been an effort to introduce, in
a modus operandi way, certain effective-notional pa-
rameters for a more practical characterization of the
linear and nonlinear viscoelastic behavior of polymers
using the example of iPP.

Depending on the algorithmus used and its para-
metric response, this effort has shown the following:

(a) Through approximations made by the aid of the
Best-Fit software, it has been shown that iPP is
satisfactorily characterized by the KWW model
and less satisfactorily by the power law. Based
on this evidence, the KWW model was taken as
a reference for all purposes.Figure 11 Strain dependence of the spectral density.

Figure 12 Schematic characteristic points of the spectral
isostrains (hyperbolas).
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(b) The nonlinear viscoelastic behavior of iPP has
been proved through the peculiar vertical shift.
The correlation of this behavior with the KWW
model leads to a formalistic introduction of an
equivalent characteristic relaxation time as a
function of the observation time t and strain �. In
this context, the vertical shift’s apparent behav-
ior is related to a intrinsic time–strain function.
Consequently, the known notion of the internal
stress–clock function could be modified as a
internal time–strain clock function, something
which demands further studies.

(c) The introduction of a so-called spectral shift
function and its corresponding spectral inver-
sion point can provide us with further, relevant
internal parameters for a more practical charac-
terization of material’s viscoelastic behavior. In
this sense, it was shown that this function can be
related to a coefficient of nonlinear viscoelastic
strength, whereas the inversion point, to a tran-
sitional behavior from linear viscoelastic to non-
linear viscoelastic state.

(d) By implementing of a (single) characteristic ef-
fective relaxation time through an Eyring-type
modeling, it is proposed to give a very general
formalistic interpretation of this time. This is
done by expressing it in the form of a function �c

� f(t, �, �̃, T, �), where the parameters are t,
observation time; �, strain; �̃, equivalent activa-
tion volume; T, temperature; and �, the stress.

(e) The experimental evidence of the above-pro-
posed internal time–strain relaxation function
for the investigated material, iPP, can take place
for an initial strain above about 3%, which
means a nonlinear viscoelastic control behavior
of this function.
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